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Polynomial perturbation of a hydrogen-like atom 

M &hen and G Herman? 
Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel 

Received 18 February 1983 

Abstract. The ground state energy of a hydrogenic atom of nuclear charge Z, perturbed 
by a polynomial perturbation 2AZr+2A2r2 ,  is calculated by means of a variational 
modification of Rayleigh-Schrodinger perturbation theory, which is effective for all nega- 
tive A .  

1. Introduction 

In a recent letter, Saxena and Varma (1982) used the method of Dalgarno and Lewis 
(1955) in a study of the ground state of a hydrogen atom in the field of a polynomial 
perturbation. Here, we treat a slightly generalised version of the same problem, with 
Hamiltonian in the usual atomic units (au) 

H ( Z , A ) = - i V 2 - Z / r + 2 A Z r + 2 A 2 r 2 .  (1) 

A simple change of scale, r + r/Z, shows that 

H ( Z ,  A )  =Z2H(p) E ( 2 ,  A )  =Z2E(p) 
where 

p = 2A/Z2 1 2 2  H (p  ) = -iV2 - 1 /r + p r  + ~p r 

As noted earlier by Killingbeck (1978, 1980), the exact solution and corresponding 
eigenvalue of H ( p )  

4 ( p )  = exp(-r - ip r2)  E ( p )  = - i+ ;p  (4) 
describe a bound ground-state only if p z=O, whereas, when p < 0, $ ( p )  is not square 
integrable. On the other hand, 4 ( - p )  is an eigenfunction of H ( - p ) ,  not of H ( p ) .  
Since both H ( p )  and H ( - p )  approach a common limit as p + 0, it is hardly surprising 
that Rayleigh-Schrodinger (RS) perturbation theory expansions in powers of p cannot 
converge for both positive and negative p. Killingbeck (1980) has verified convergence 
to very high order when p 3 0. 

The case p < O  has been treated by Saxena and Varma (1982) by means of a 
perturbation expansion in powers of Ip I-”*. This allows a unified treatment of both 
p > O  and p CO, but fails for small IF/. A variational extension of their procedure 
seems more appropriate. To this end, we rewrite H ( p )  and E ( p )  

H(p)=k[Ho+pHl(q,  E(F)=k(Eo+xpnEn(q, s)) (5a, b )  

t Present address: Department of Geophysics and Space Science, Tel Aviv University, Israel. 
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where 

Hl(q, s) = - l / r  +qr +sr2.  (5c,  4 1 2  H~ = -to2 + Zr 

The scale factor k is to be chosen optimally for each p, while p, q and s are related 
to k by means of 

p = k - ' I 2  4 = p / k  s = ( q 2 - 1 ) / 2 p  (6 )  
and p plays the role of formal KS expansion parameter. As we show below, even a 
simple zero-order treatment yields quite different results for p 2 0 and p < 0. 

2. Variational perturbation theory 

We follow the procedure of Dalgarno and Stewart (1961), adopting as variational 
trial function 

$t =tLo+vp41(q, s) (7) 

where Go is an eigenfunction of Ho, $l(q, s )  is the first-order correction due to Hl(q, s) 
and is conveniently chosen orthogonal to $0, while 7 is a linear variational parameter. 
When 7 is chosen optimally for any given k ,  the optimised energy is given by the 
upper bound formula 

(8) E" = k [Eo +pEi(q, s 1 + 7P2E2(q, s 11 

pZ(1(11~$1)~2f( l -PE3/E2)~ - 1  =o.  (9 )  

where 7 satisfies the equation 

Thus, provided that is sufficiently small, equation (9)  furnishes a theoretical 
justification for the so-called geometric approximation to the truncated RS expansion _ _  
tactually the [ 2 /  11 Pad6 appriximant) 

EG = Ed71 *) q* = ( 1  -pE3/E2)-* 

3. Solutions 

The normalised ground-state solution of Ho is simply 

= (:a )3'2 exp(-tr2) a = 2 / d 2  

and yields the following expectation values: 

( r 2 " ) 0  = ( t ~ o l r ~ " 1 1 ~ ~ )  = ( 2 n  + 1 ) ! / 2 ' " n !  

(r2"+')0 = (1l.olr~"+'11l.o) = ( n  + l ) ! a  
Consequently, we have 

3 Ei(q, s) = (4 - l b  + zs E - 3  
0 - 2  

and, in view of the form of Hl(q, s), we write 

41k, s) = cLo(-f-* +4fl +sf21 

( n  3 0)  

( n  5 -1). 
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where rL0 fn  is the well behaved solution of 

(Ho-Eo)(rLofn)+(r" -(r")0)40=0* (15) 

The integral identity (valid separately for n even and n odd) 

may now be used to show that, for all n 2 1 ,  

fn =:(n + ~ ) f ~ - ~ - ( l / n ) r " .  (17)  

Since we may clearly take fo = 0, we have at once from (17)  that fz  = - i f2  andfl = f-1- r, 
so that we need only f-l or f l  to complete the calculation of Jll, E2 and E3. 

The function f-I was obtained in a recent calculation of the effects of strong 
magnetic fields on a hydrogen atom (Cohen and Herman 1981). Its derivative may 
be expressed in closed form: 

fL, =(ar-1+er2erfc r ) / r 2  ( 1 8 )  

where erfc r is the complementary error function defined by (Abramowitz and Stegun 
1964) 

m 

erfc r = a 1, e-'* dx. 

f-l itself cannot be written simply in terms of elementary functions, but expansion of 
( 1  8) followed by term-by-term integration yields two convergent infinite series: 

(20) 
r 2 n + l  - 2*"+ln !arznt2> 

A variational approximation to f-l was employed in our earlier work (Cohen and 
Herman 1981). 

Several of the integrals which contribute to (t,bl141), E2 and E3 involve infinite 
sums, some of which may be useful in other connections, and are gathered for 
convenient reference in the appendix. Note that all necessary integrals were obtained 
analytically, with the sole exception of 

'-' =,,!o ( (2n  + l ) ( n  + l ) !  ( 2 n  + 3 ) !  

X 
1 

V I =  Jo i z  In (1 + x )  dx = 0.162 865 007. ( 2 1 )  

Some comments on methods of solution of the perturbation equations, such as 
our equation ( 1 5 )  for f-l,  may be in order here. The method of Dalgarno and Lewis 
(1955) essentially involves a direct solution (i.e. it avoids the infinite sum-over-states 
inherent in the classic form of RS perturbation theory). Furthermore, as noted by 
Young and March (1958) and emphasised by Mrschfelder et al (1964), any perturba- 
tion equation may be reduced to an inhomogeneous linear differential equation of 
first order in the derivative (or gradient) of an appropriate function, in our case f-l. 
The procedure is completely general, and is not restricted to perturbation equations 
of first order, but the first-order solution must be available in explicit form in order 
to proceed conveniently to second order. Our derived form of f-l is too cumbersome 
to allow us to calculate the second-order correction to $(p) in closed form, although 
a variational approximation of high accuracy can be obtained fairly easily, 
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An alternative method (Aharonov and Au 1979, Au and Aharonov 1979) achieves 
a similar reduction of order in the perturbation equations by first transforming to the 
logarithm of the perturbed wavefunction $. Unfortunately, this method rapidly 
encounters the same difficulties as the more direct procedure followed here. 

4. Choice of scale factor: zero-order approximation 

If the zero-order J / o  is itself regarded as a variational trial function, the upper bound 
energy is simply k[Eo+pEl(q ,  s)]  and may be optimised as a function of k. (Recall 
that p ,  q and s are all functions of k . )  The optimal k and energy are then found to 
depend on both the sign and magnitude of p, as follows: 

Thus, for almost all negative p,  the optimised energy is obtained for what is the 
asymptotic scale factor (k  = -p ) ,  whereas for positive p the corresponding asymptotic 
scale factor is never optimal. In the following, we confine our attention to negative 
p, since an exact solution is available for p > 0. 

5. First-order calculations 

After orthogonalising J/1(q, s) of equation (14) to J /o ,  we obtain exact expressions for 
(J/ll+bl), E z  and E3 in the form of polynomials in q and s. When p <-la’ (so that 
q = - 1, s = 0) we have explicitly 

( J / I~$I )  = ( ~ - 4 7 ~ ) - a ~ ( 5 - $ r ~ + l 6 V ~ )  (24a) 

(246 1 
(24c) 

E -2 2 2 - 2 - 4 a  In2 

E 3  = 2 4 5  -477 - 8 In 2)-4a3[1 - f r 2 + 2 ( l n  2)2 +8 VI - 2p(2)] 

where VI is given by equation (2 1) above, while p (2) denotes Catalan’s constant (cf 
Abramowitz and Stegun 1964) 

OD 

p ( 2 ) =  1 (-1)k/(2k+1)2=0.915965594 . . .  
k = O  

Note that our E 2  reproduces the result of Saxena and Varma (1982) but that E3 
differs from their semi-empirical estimate in both magnitude and sign. 

For smaller negative p, the analogues of equations (24) contain more terms, and 
need not be given here. 

It is now a straightforward calculation to determine the optimal values of 17 and 
the corresponding upper bounds to the energy. Table 1 contains a summary of our 
results. 
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Table 1. Calculated energies for negative A. 

Perturbation sums 

- A  
First 
order 

Second 
order 

0.02: 
0.05t 
0.1 
I 
2 
5 

40 
320 

-0.484 413 
-0.574 413 
-0.709 253 
-0.191 538 

1.486 483 
7.863 504 

99.814 940 
902.908 028 

-0.532 232 
-0.617 619 
-0.739 423 
-0.221 708 

1.456314 
7.833 334 

99.784 770 
902.877 8.59 

Third 
order 

-0.548 426 
-0.634 460 
-0.752 935 
-0.225 981 

1.453 292 
7.831 423 

99.784 095 
902.877 620 

Upper 
bound 

-0.554 022 
-0.641 416 
-0.760 206 
-0.226 574 

1.453 005 
7.831 311 

99.784 081 
902.877 618 

Geom 
approx 

-0.556 720 
-0.645 218 
-0.763 206 
-0.226 686 

1.452 956 
7.831 294 

99.784 079 
902.877 618 

Accurate$ 

-0.560 000 
-0.649 107 
-0.765 827 
-0.226 773 

1.452 917 
7.831 279 

99.784 077 
902.877 618 

~ ~ ~~ 

t Optimised k from equation (22a). 
$ Hill determinant values from Saxena and Varma (1982) 

6. Results and discussion 

Perturbation sums through first, second and third orders, the variational upper bounds 
of equation (8), and the results of using the geometric approximation of equation 
( lo) ,  are compared with accurate results based on the method of Hill determinants 
(Biswas et a1 1973) and quoted by Saxena and Varma (1982). There is satisfactory 
convergence for all values of A (we have taken Z = 1 for simplicity of comparison 
with the earlier work), although higher-order corrections are evidently required to 
achieve greater accuracy for A = -0.02 and A = -0.05. However, our perturbation 
results are already much better than those of Saxena and Varma (1982) at these A 
values, emphasising the essential role of the scale factor k. We note that at A = -0.02, 
the RS parameter p = 1.44 results from the optimal choice of k (equation (22a)) 
whereas the asymptotic choice adopted by Saxena and Varma yields p = 5. The 
perturbation is clearly much smaller when the scale factor is chosen correctly. 

It is probable that slightly better upper bounds can be obtained for small negative 
A by a simultaneous variation of k and 7, but such a choice cannot be guaranteed to 
improve either the convergence of the perturbation sums or the accuracy of the 
geometric approximation. 

For larger negative A ,  where our second-order perturbation results reproduce those 
of Saxena and Varma, the slight improvement obtained by including the third-order 
energy coefficient makes the perturbation results competitive in accuracy with refined 
variational calculations, and there seems little to be gained from an elaborate higher- 
order calculation. 

Appendix. Some infinite sums 

In the course of the present calculations, a number of infinite sums were evaluated 
by a variety of analytical procedures. In particular, we note the following: 

(2n-1 ) !  
SI= 22fl(n !)2 = In 2 
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